To convert an expression in an infix expression to its equivalent in postfix notation, we must know the precedence and associativity of operators. 要把表达式从中缀表达式的形式转换成用后缀表示法表示的等价表达式,必须了解操作符的优先级和结合性。
When parsing expressions written in infix notation, you need parentheses and precedence rules to remove ambiguity. 对以中缀表示法书写的表达式进行语法分析时,需要用括号和优先规则排除多义性。
Infix notation is a common way of writing expressions, while prefix and postfix notations are primarily used in computer science. 中缀表示法是书写表达式的常见方式,而前缀和后缀表示法主要用于计算机科学领域。
It does not convert infix expressions to postfix notation; rather, it evaluates the infix expression directly. 不是把中缀表达式转换为后缀表示法;恰恰相反,它对中缀表达式直接求值。
Infix notation is the conventional notation for arithmetic expressions. 中缀表示法是算术表达式的常规表示法。